Scaling up – when computing meets optical transport

While we have been busy working towards a 100G ANI prototype wide area network (WAN), researchers at Intel are making sure that we have plenty to do in the future. Yesterday’s Wall Street Journal article ( on Intel demonstrating 50Gbps communication between chips with silicon-based lasers, is just the tip of the iceberg of competitive research looming in the arena of photon-electron integration.

50G Silicon Photonics Link (image from Intel white paper)

This demonstration from Intel (Kudos to them!) is a great reminder of how such innovations can revolutionize the computing model by making it easier to move large amounts of data between the chips on a motherboard or between thousands of multi-core processors, leading the way towards exascale computing.  Just imagine the multi-terabit fire hose of capacity ESnet would have to turn on to keep those chips satisfied! This seamless transition from electronics to photonics without dependence on expensive sets of photonic components has the potential to transform the entire computing industry and give an additional boost to the “Cloud” industry. Thomas J. Watson has been credited with saying “The world needs only five computers”. We look to be collecting the innovations to just prove him right one day.

While we do get excited about the fantastic future of silicon integration, I would like to point out the PIC (Photonic Integrated Chip) has been a great innovation by a company, Infinera, just down the Silicon Valley – they are actually mass-producing integrated lasers on a chip for a different application – long distance communication, by using a substrate material different than silicon. This technology is for real. You can get to play with the Infinera’s in our ANI testbed – you just need to come up with a cool research problem and write a proposal by October 1st, 2010.

Fire away!


August 4th, 2010

Computing at the Speed of Light – Read MIT Technology Review’s take on the same topic.